This commit is contained in:
2025-09-12 19:01:18 +00:00
parent ba361b16fd
commit e71cfa3faa
56 changed files with 0 additions and 0 deletions

View file

@ -0,0 +1,120 @@
{
"What is this?": "This is save file with preset values for fusion-ai-image-generator, where you can generate images with Stable Diffusion 1.5, unlimited , uncensored and Images for free. Load this save file at https://perchance.org/fusion-ai-image-generator",
"format": "fusion-ai-image-generator-v2",
"prefix": "",
"suffix": "",
"main": "𖣠⚪ ƧI⅃OꟼOИƎMUϽƎ YЯTƎMYƧ ᗡ⅃OꟻЯUOꟻ ИAIꟼOTU ϽITƧIЯUTUꟻ ƎTIHW ⚪𔗢⚪🞋⚪𔗢⚪ WHITE FUTURISTIC UTOPIAN FOURFOLD SYMETRY ECUMENOPOLIS ⚪𖣠",
"base": "",
"promptA": "",
"promptB": "",
"promptC": "",
"negative": "",
"_userSymbolText": "",
"saveName": "",
"_seed": "",
"numImages": "n1",
"_shape": "512x512",
"_main": "Prompt input only ✏️",
"_promptA": "Prompt input ✏️",
"_promptB": "OFF",
"_promptC": "OFF",
"_negative": "OFF",
"numTokensNegative": "default",
"numTokensMain": "default",
"numTokensPrompt": "default",
"numTokensBase": "default",
"shiftPercentage": "0%",
"_comma": "default",
"shiftPercentageNegative": "r1t4",
"Mode": "default",
"artStyleNegative": "_negative",
"artStylePreposition": "_whitespace",
"artStyleBase": "_NONE",
"artStyleArt": "_randomStyle",
"artStyleMain": "_none",
"artStylePrompt": "_tokensa",
"prefix_visibility": "hidden",
"suffix_visibility": "hidden",
"main_visibility": "visible",
"base_visibility": "hidden",
"promptA_visibility": "hidden",
"promptB_visibility": "hidden",
"promptC_visibility": "hidden",
"negative_visibility": "visible",
"_userSymbolText_visibility": "hidden",
"saveName_visibility": "hidden",
"_seed_visibility": "hidden",
"numImages_visibility": "hidden",
"_shape_visibility": "hidden",
"_main_visibility": "visible",
"_base_visibility": "hidden",
"_promptA_visibility": "hidden",
"_promptB_visibility": "hidden",
"_promptC_visibility": "hidden",
"_negative_visibility": "visible",
"numTokensNegative_visibility": "visible",
"numTokensMain_visibility": "visible",
"numTokensPrompt_visibility": "hidden",
"numTokensBase_visibility": "hidden",
"shiftPercentage_visibility": "visible",
"_comma_visibility": "hidden",
"shiftPercentageNegative_visibility": "visible",
"Mode_visibility": "hidden",
"artStyleNegative_visibility": "visible",
"artStylePreposition_visibility": "hidden",
"artStyleBase_visibility": "hidden",
"artStyleArt_visibility": "hidden",
"artStyleMain_visibility": "visible",
"artStylePrompt_visibility": "hidden",
"prefix_evaluated": [
[
"",
""
]
],
"suffix_evaluated": [
[
"",
""
]
],
"base_evaluated": [
[
" ",
" "
]
],
"main_evaluated": [
[
"𖣠⚪ ƧI⅃OꟼOИƎMUϽƎ YЯTƎMYƧ ᗡ⅃OꟻЯUOꟻ ИAIꟼOTU ϽITƧIЯUTUꟻ ƎTIHW ⚪𔗢⚪🞋⚪𔗢⚪ WHITE FUTURISTIC UTOPIAN FOURFOLD SYMETRY ECUMENOPOLIS ⚪𖣠",
"𖣠⚪ ƧI⅃OꟼOИƎMUϽƎ YЯTƎMYƧ ᗡ⅃OꟻЯUOꟻ ИAIꟼOTU ϽITƧIЯUTUꟻ ƎTIHW ⚪𔗢⚪🞋⚪𔗢⚪ WHITE FUTURISTIC UTOPIAN FOURFOLD SYMETRY ECUMENOPOLIS ⚪𖣠"
]
],
"negative_evaluated": [
[
"",
""
]
],
"promptA_evaluated": [
[
"",
""
]
],
"promptB_evaluated": [
[
"",
""
]
],
"promptC_evaluated": [
[
"",
""
]
],
"seed_evaluated": [
0
]
}

View file

@ -0,0 +1,4 @@
𖣠 ꟼIHƧЯƎHTOM MƧIИAꓨЯO ꓨИIVIᒧ ᒧAƎЯƎHTƎ ƎᗡIWTƎИAᒧꟼ ИAIꟼOTU ϽITƧIЯUTUꟻ ᗡAƎHA ƧИOƎ ᒧAϽYЯTƎMYƧ YᒧAϽIЯƎHꟼƧOᗺUϽ ƎᒧAϽƧƎTIHW YϽAЯUϽA ИOIƧIϽƎЯꟼ ƎTUᒧOƧᗺA 𖣠𔗢ⵙ𔗢𖣠 ABSOLUTE PRECISION ACURACY WHITESCALE CUBOSPHERICALY SYMETRYCAL EONS AHEAD FUTURISTIC UTOPIAN PLANETWIDE ETHEREAL LIVING ORGANISM MOTHERSHIP 𖣠
𖣠⚪ⵈ⊚ᗱᗴ⚇ᙁᗩↀ⚪𔗢⚪🞋⚪𔗢⚪ↀᗩᙁ⚇ᗱᗴ⊚ⵈ⚪𖣠
𖣠 ꟼIHƧЯƎHTOM MƧIИAꓨЯO ꓨИIVIᒧ ᒧAƎЯƎHTƎ ƎᗡIWTƎИAᒧꟼ ИAIꟼOTU ϽITƧIЯUTUꟻ ᗡAƎHA ƧИOƎ ᒧAϽYЯTƎMYƧ YᒧAϽIЯƎHꟼƧOᗺUϽ ƎᒧAϽƧƎTIHW YϽAЯUϽA ИOIƧIϽƎЯꟼ ƎTUᒧOƧᗺA 𖣠 𔗢 ⵙ 𔗢 𖣠 ABSOLUTE PRECISION ACURACY WHITESCALE CUBOSPHERICALY SYMETRYCAL EONS AHEAD FUTURISTIC UTOPIAN PLANETWIDE ETHEREAL LIVING ORGANISM MOTHERSHIP 𖣠
𖣠⚪ ɘϱami\MⓄϽ.IA-ƎᒧᒧA ⚪🞋⚪ ALLE-AI.CⓄM/image ⚪𖣠

View file

@ -0,0 +1,308 @@
{
"4": {
"inputs": {
"ckpt_name": "RealVisXL_V4.0_Lightning.safetensors"
},
"class_type": "CheckpointLoaderSimple",
"_meta": {
"title": " "
}
},
"5": {
"inputs": {
"width": [
"214",
0
],
"height": [
"214",
0
],
"batch_size": 1
},
"class_type": "EmptyLatentImage",
"_meta": {
"title": " "
}
},
"8": {
"inputs": {
"samples": [
"72",
0
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode",
"_meta": {
"title": " "
}
},
"61": {
"inputs": {
"images": [
"8",
0
]
},
"class_type": "PreviewImage",
"_meta": {
"title": " "
}
},
"72": {
"inputs": {
"noise": [
"131",
0
],
"guider": [
"74",
0
],
"sampler": [
"132",
0
],
"sigmas": [
"185",
0
],
"latent_image": [
"5",
0
]
},
"class_type": "SamplerCustomAdvanced",
"_meta": {
"title": " "
}
},
"74": {
"inputs": {
"cfg": [
"224",
0
],
"neg_scale": 0,
"model": [
"4",
0
],
"positive": [
"91",
0
],
"negative": [
"95",
0
],
"empty_conditioning": [
"122",
0
]
},
"class_type": "PerpNegGuider",
"_meta": {
"title": " "
}
},
"91": {
"inputs": {
"text": [
"156",
0
],
"clip": [
"4",
1
]
},
"class_type": "Text to Conditioning",
"_meta": {
"title": " "
}
},
"95": {
"inputs": {
"text": [
"155",
0
],
"clip": [
"4",
1
]
},
"class_type": "Text to Conditioning",
"_meta": {
"title": " "
}
},
"122": {
"inputs": {
"text": [
"154",
0
],
"clip": [
"4",
1
]
},
"class_type": "Text to Conditioning",
"_meta": {
"title": " "
}
},
"131": {
"inputs": {
"noise_seed": 0,
"noise_mode": "CPU",
"batch_seed_mode": "comfy",
"variation_seed": 0,
"variation_strength": 0,
"variation_method": "linear"
},
"class_type": "RandomNoise //Inspire",
"_meta": {
"title": " "
}
},
"132": {
"inputs": {
"order": 3,
"rtol": 0,
"atol": 0,
"h_init": 1,
"pcoeff": 0,
"icoeff": 0,
"dcoeff": 0,
"accept_safety": 0,
"eta": 0,
"s_noise": 0
},
"class_type": "SamplerDPMAdaptative",
"_meta": {
"title": " "
}
},
"151": {
"inputs": {
"samples": [
"72",
1
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode",
"_meta": {
"title": " "
}
},
"153": {
"inputs": {
"images": [
"151",
0
]
},
"class_type": "PreviewImage",
"_meta": {
"title": " "
}
},
"154": {
"inputs": {
"Text": ""
},
"class_type": "DF_Text_Box",
"_meta": {
"title": " "
}
},
"155": {
"inputs": {
"Text": ""
},
"class_type": "DF_Text_Box",
"_meta": {
"title": " "
}
},
"156": {
"inputs": {
"Text": "⚪"
},
"class_type": "DF_Text_Box",
"_meta": {
"title": " "
}
},
"161": {
"inputs": {
"Value": 8
},
"class_type": "DF_Integer",
"_meta": {
"title": " "
}
},
"162": {
"inputs": {
"a": [
"161",
0
]
},
"class_type": "CM_IntToFloat",
"_meta": {
"title": " "
}
},
"185": {
"inputs": {
"steps": [
"161",
0
],
"denoise": 1,
"model": [
"4",
0
]
},
"class_type": "SDTurboScheduler",
"_meta": {
"title": " "
}
},
"214": {
"inputs": {
"int": 256
},
"class_type": "int _O",
"_meta": {
"title": " "
}
},
"224": {
"inputs": {
"Value_A": [
"162",
0
],
"Value_B": 1
},
"class_type": "DF_Multiply",
"_meta": {
"title": " "
}
}
}

View file

@ -0,0 +1,277 @@
{
"4": {
"inputs": {
"ckpt_name": "RealVisXL_V4.0_Lightning.safetensors"
},
"class_type": "CheckpointLoaderSimple",
"_meta": {
"title": " "
}
},
"5": {
"inputs": {
"width": 256,
"height": 256,
"batch_size": 1
},
"class_type": "EmptyLatentImage",
"_meta": {
"title": " "
}
},
"8": {
"inputs": {
"samples": [
"72",
0
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode",
"_meta": {
"title": " "
}
},
"61": {
"inputs": {
"images": [
"8",
0
]
},
"class_type": "PreviewImage",
"_meta": {
"title": " "
}
},
"72": {
"inputs": {
"noise": [
"131",
0
],
"guider": [
"74",
0
],
"sampler": [
"132",
0
],
"sigmas": [
"142",
0
],
"latent_image": [
"5",
0
]
},
"class_type": "SamplerCustomAdvanced",
"_meta": {
"title": " "
}
},
"74": {
"inputs": {
"cfg": [
"162",
0
],
"neg_scale": 0,
"model": [
"4",
0
],
"positive": [
"91",
0
],
"negative": [
"95",
0
],
"empty_conditioning": [
"122",
0
]
},
"class_type": "PerpNegGuider",
"_meta": {
"title": " "
}
},
"91": {
"inputs": {
"text": [
"156",
0
],
"clip": [
"4",
1
]
},
"class_type": "Text to Conditioning",
"_meta": {
"title": " "
}
},
"95": {
"inputs": {
"text": [
"155",
0
],
"clip": [
"4",
1
]
},
"class_type": "Text to Conditioning",
"_meta": {
"title": " "
}
},
"122": {
"inputs": {
"text": [
"154",
0
],
"clip": [
"4",
1
]
},
"class_type": "Text to Conditioning",
"_meta": {
"title": " "
}
},
"131": {
"inputs": {
"noise_seed": 0,
"noise_mode": "CPU",
"batch_seed_mode": "comfy",
"variation_seed": 0,
"variation_strength": 0,
"variation_method": "linear"
},
"class_type": "RandomNoise //Inspire",
"_meta": {
"title": " "
}
},
"132": {
"inputs": {
"order": 2,
"rtol": 100,
"atol": 100,
"h_init": 100,
"pcoeff": 0,
"icoeff": 0,
"dcoeff": 0,
"accept_safety": 0,
"eta": 0,
"s_noise": 0
},
"class_type": "SamplerDPMAdaptative",
"_meta": {
"title": " "
}
},
"142": {
"inputs": {
"coeff": 1,
"steps": [
"161",
0
],
"denoise": 1
},
"class_type": "GITSScheduler",
"_meta": {
"title": " "
}
},
"151": {
"inputs": {
"samples": [
"72",
1
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode",
"_meta": {
"title": " "
}
},
"153": {
"inputs": {
"images": [
"151",
0
]
},
"class_type": "PreviewImage",
"_meta": {
"title": " "
}
},
"154": {
"inputs": {
"Text": ""
},
"class_type": "DF_Text_Box",
"_meta": {
"title": " "
}
},
"155": {
"inputs": {
"Text": ""
},
"class_type": "DF_Text_Box",
"_meta": {
"title": " "
}
},
"156": {
"inputs": {
"Text": "⚪"
},
"class_type": "DF_Text_Box",
"_meta": {
"title": " "
}
},
"161": {
"inputs": {
"Value": 8
},
"class_type": "DF_Integer",
"_meta": {
"title": " "
}
},
"162": {
"inputs": {
"a": [
"161",
0
]
},
"class_type": "CM_IntToFloat",
"_meta": {
"title": " "
}
}
}

View file

@ -0,0 +1,275 @@
{
"4": {
"inputs": {
"ckpt_name": "RealVisXL_V4.0_Lightning.safetensors"
},
"class_type": "CheckpointLoaderSimple",
"_meta": {
"title": " "
}
},
"5": {
"inputs": {
"width": 256,
"height": 256,
"batch_size": 1
},
"class_type": "EmptyLatentImage",
"_meta": {
"title": " "
}
},
"8": {
"inputs": {
"samples": [
"72",
0
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode",
"_meta": {
"title": " "
}
},
"61": {
"inputs": {
"images": [
"8",
0
]
},
"class_type": "PreviewImage",
"_meta": {
"title": " "
}
},
"72": {
"inputs": {
"noise": [
"158",
0
],
"guider": [
"74",
0
],
"sampler": [
"132",
0
],
"sigmas": [
"159",
0
],
"latent_image": [
"5",
0
]
},
"class_type": "SamplerCustomAdvanced",
"_meta": {
"title": " "
}
},
"74": {
"inputs": {
"cfg": [
"161",
0
],
"neg_scale": 0,
"model": [
"4",
0
],
"positive": [
"91",
0
],
"negative": [
"95",
0
],
"empty_conditioning": [
"122",
0
]
},
"class_type": "PerpNegGuider",
"_meta": {
"title": " "
}
},
"91": {
"inputs": {
"text": [
"154",
0
],
"clip": [
"4",
1
]
},
"class_type": "Text to Conditioning",
"_meta": {
"title": " "
}
},
"95": {
"inputs": {
"text": [
"156",
0
],
"clip": [
"4",
1
]
},
"class_type": "Text to Conditioning",
"_meta": {
"title": " "
}
},
"122": {
"inputs": {
"text": [
"155",
0
],
"clip": [
"4",
1
]
},
"class_type": "Text to Conditioning",
"_meta": {
"title": " "
}
},
"132": {
"inputs": {
"order": 2,
"rtol": 100,
"atol": 100,
"h_init": 100,
"pcoeff": 0,
"icoeff": 0,
"dcoeff": 0,
"accept_safety": 0,
"eta": 0,
"s_noise": 0
},
"class_type": "SamplerDPMAdaptative",
"_meta": {
"title": " "
}
},
"151": {
"inputs": {
"samples": [
"72",
1
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode",
"_meta": {
"title": " "
}
},
"153": {
"inputs": {
"images": [
"151",
0
]
},
"class_type": "PreviewImage",
"_meta": {
"title": " "
}
},
"154": {
"inputs": {
"Text": "⚪"
},
"class_type": "Text box",
"_meta": {
"title": " "
}
},
"155": {
"inputs": {
"Text": ""
},
"class_type": "Text box",
"_meta": {
"title": " "
}
},
"156": {
"inputs": {
"Text": ""
},
"class_type": "Text box",
"_meta": {
"title": " "
}
},
"158": {
"inputs": {
"noise_seed": 0
},
"class_type": "RandomNoise",
"_meta": {
"title": " "
}
},
"159": {
"inputs": {
"steps": [
"162",
0
],
"denoise": 1,
"model": [
"4",
0
]
},
"class_type": "SDTurboScheduler",
"_meta": {
"title": " "
}
},
"161": {
"inputs": {
"Value": [
"162",
0
]
},
"class_type": "Int to float",
"_meta": {
"title": " "
}
},
"162": {
"inputs": {
"Value": 8
},
"class_type": "Integer",
"_meta": {
"title": " "
}
}
}

View file

@ -0,0 +1,762 @@
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 29251, 754]
NotebookOptionsPosition[ 27548, 714]
NotebookOutlinePosition[ 28951, 750]
CellTagsIndexPosition[ 28908, 747]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{"ClearAll", "[",
RowBox[{"iCurvaturePlotHelper", ",", " ", "CurvaturePlot"}], "]"}], "\n",
RowBox[{
RowBox[{"iCurvaturePlotHelper", "[",
RowBox[{
RowBox[{"f_", "?",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Head", "[", "#", "]"}], " ", "=!=", " ", "List"}], " ",
"&"}], ")"}]}], ",", " ",
RowBox[{"{",
RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x0_", ",", " ", "y0_"}], "}"}], ",", " ", "\[Theta]0_"}],
"}"}], ",", " ",
RowBox[{"opts", " ", ":", " ",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"sol", ",", " ", "\[Theta]", ",", " ", "x", ",", " ", "y", ",", " ",
"if"}], "}"}], ",", "\n", " ",
RowBox[{
RowBox[{"sol", " ", "=", " ",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{", "\n", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], " ", "==", " ", "f"}],
",", "\n", " ",
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], " ", "==", " ",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", "\n", " ",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], " ", "==", " ",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", "\n", " ",
RowBox[{
RowBox[{"\[Theta]", "[", "tmin", "]"}], " ", "==", " ",
"\[Theta]0"}], ",", "\n", " ",
RowBox[{
RowBox[{"x", "[", "tmin", "]"}], " ", "==", " ", "x0"}], ",", "\n",
" ",
RowBox[{
RowBox[{"y", "[", "tmin", "]"}], " ", "==", " ", "y0"}]}], "\n",
" ", "}"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "y"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", " ",
"opts"}], "]"}]}], ";", "\n", " ",
RowBox[{"if", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "[", "#", "]"}], ",", " ",
RowBox[{"y", "[", "#", "]"}]}], "}"}], " ", "&"}], " ", "/.", " ",
RowBox[{"First", "[", "sol", "]"}]}]}], ";", "\n", " ", "if"}]}],
"\n", " ", "]"}]}], "\n",
RowBox[{
RowBox[{"CurvaturePlot", "[",
RowBox[{"f_", ",", " ",
RowBox[{"{",
RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ",
RowBox[{"opts", " ", ":", " ",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ",
RowBox[{"CurvaturePlot", "[",
RowBox[{"f", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", "0"}], "}"}], ",", " ",
"opts"}], "]"}]}], "\n",
RowBox[{
RowBox[{"CurvaturePlot", "[",
RowBox[{"f_", ",", " ",
RowBox[{"{",
RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ",
RowBox[{"p", " ", ":", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x0_", ",", " ", "y0_"}], "}"}], ",", " ", "\[Theta]0_"}],
"}"}]}], ",", " ",
RowBox[{"opts", " ", ":", " ",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"\[Theta]", ",", " ", "x", ",", " ", "y", ",", " ", "sol", ",", " ",
"rlsplot", ",", " ", "rlsndsolve", ",", " ", "if", ",", " ", "ifs"}],
"}"}], ",", "\n", " ",
RowBox[{
RowBox[{"rlsplot", " ", "=", " ",
RowBox[{"FilterRules", "[",
RowBox[{
RowBox[{"{", "opts", "}"}], ",", " ",
RowBox[{"Options", "[", "ParametricPlot", "]"}]}], "]"}]}], ";", "\n",
" ",
RowBox[{"rlsndsolve", " ", "=", " ",
RowBox[{"FilterRules", "[",
RowBox[{
RowBox[{"{", "opts", "}"}], ",", " ",
RowBox[{"Options", "[", "NDSolve", "]"}]}], "]"}]}], ";", "\n", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Head", "[", "f", "]"}], " ", "===", " ", "List"}], ",", "\n",
" ",
RowBox[{
RowBox[{"ifs", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"iCurvaturePlotHelper", "[",
RowBox[{"#", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ", "p", ",", " ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsndsolve"}], ")"}]}]}],
"]"}], " ", "&"}], " ", "/@", " ", "f"}]}], ";", "\n", " ",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{"#", "[", "tplot", "]"}], " ", "&"}], " ", "/@", " ",
"ifs"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"tplot", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsplot"}], ")"}]}]}],
"]"}]}], "\n", " ", ",", "\n", " ",
RowBox[{
RowBox[{"if", " ", "=", " ",
RowBox[{"iCurvaturePlotHelper", "[",
RowBox[{"f", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ", "p", ",", " ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsndsolve"}], ")"}]}]}],
"]"}]}], ";", "\n", " ",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"if", "[", "tplot", "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"tplot", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsplot"}], ")"}]}]}],
"]"}]}]}], "\n", " ", "]"}]}]}], "\n", " ", "]"}]}]}], "Input",
TextAlignment->Center,
FontFamily->"Segoe UI Symbol",
FontSize->10,
FontWeight->"Normal",
CellLabel->
"3/24/24 14:22:34 \
In[760]:=",ExpressionUUID->"296ee68d-611b-4f39-8505-8dc995c0ca11"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"ariasD", "[",
RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ",
RowBox[{
RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"k", " ",
RowBox[{"(",
RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ",
RowBox[{"n", " ",
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/",
"2"}], ")"}]}], " ",
RowBox[{
RowBox[{"ariasD", "[", "k", "]"}], "/",
RowBox[{
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}],
"!"}]}]}], ",", " ",
RowBox[{"{",
RowBox[{"k", ",", " ", "0", ",", " ",
RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}],
";"}], "\n",
RowBox[{
RowBox[{"iFabiusF", "[", "x_", "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"prec", " ", "=", " ",
RowBox[{"Precision", "[", "x", "]"}]}], ",", " ", "n", ",", " ", "p",
",", " ", "q", ",", " ", "s", ",", " ", "tol", ",", " ", "w", ",", " ",
"y", ",", " ", "z"}], "}"}], ",", "\n", " ",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"x", " ", "<", " ", "0"}], ",", " ",
RowBox[{"Return", "[",
RowBox[{"0", ",", " ", "Module"}], "]"}]}], "]"}], ";", " ",
RowBox[{"tol", " ", "=", " ",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n", " ",
RowBox[{"z", " ", "=", " ",
RowBox[{"SetPrecision", "[",
RowBox[{"x", ",", " ", "Infinity"}], "]"}]}], ";", " ",
RowBox[{"s", " ", "=", " ", "1"}], ";", " ",
RowBox[{"y", " ", "=", " ", "0"}], ";", "\n", " ",
RowBox[{"z", " ", "=", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{"0", " ", "<=", " ", "z", " ", "<=", " ", "2"}], ",", " ",
RowBox[{"1", " ", "-", " ",
RowBox[{"Abs", "[",
RowBox[{"1", " ", "-", " ", "z"}], "]"}]}], ",", "\n", " ",
RowBox[{
RowBox[{"q", " ", "=", " ",
RowBox[{"Quotient", "[",
RowBox[{"z", ",", " ", "2"}], "]"}]}], ";", "\n", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"ThueMorse", "[", "q", "]"}], " ", "==", " ", "1"}], ",",
" ",
RowBox[{"s", " ", "=", " ",
RowBox[{"-", "1"}]}]}], "]"}], ";", "\n", " ",
RowBox[{"1", " ", "-", " ",
RowBox[{"Abs", "[",
RowBox[{"1", " ", "-", " ", "z", " ", "+", " ",
RowBox[{"2", " ", "q"}]}], "]"}]}]}]}], "]"}]}], ";", "\n", " ",
RowBox[{"While", "[",
RowBox[{
RowBox[{"z", " ", ">", " ", "0"}], ",", "\n", " ",
RowBox[{
RowBox[{"n", " ", "=", " ",
RowBox[{"-",
RowBox[{"Floor", "[",
RowBox[{"RealExponent", "[",
RowBox[{"z", ",", " ", "2"}], "]"}], "]"}]}]}], ";", " ",
RowBox[{"p", " ", "=", " ",
RowBox[{"2", "^", "n"}]}], ";", "\n", " ",
RowBox[{"z", " ", "-=", " ",
RowBox[{"1", "/", "p"}]}], ";", " ",
RowBox[{"w", " ", "=", " ", "1"}], ";", "\n", " ",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"w", " ", "=", " ",
RowBox[{
RowBox[{"ariasD", "[", "m", "]"}], " ", "+", " ",
RowBox[{"p", " ", "z", " ",
RowBox[{"w", "/",
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "m", " ", "+", " ", "1"}],
")"}]}]}]}]}], ";", " ",
RowBox[{"p", " ", "/=", " ", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"m", ",", " ", "n"}], "}"}]}], "]"}], ";", "\n", " ",
RowBox[{"y", " ", "=", " ",
RowBox[{"w", " ", "-", " ", "y"}]}], ";", "\n", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Abs", "[", "w", "]"}], " ", "<", " ",
RowBox[{
RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",", " ",
RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n", " ",
RowBox[{"SetPrecision", "[",
RowBox[{
RowBox[{"s", " ",
RowBox[{"Abs", "[", "y", "]"}]}], ",", " ", "prec"}], "]"}]}]}],
"]"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ",
RowBox[{"Interval", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"FabiusF", "[",
RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}], ",", " ",
RowBox[{"TrueQ", "[",
RowBox[{
RowBox[{
RowBox[{"Composition", "[",
RowBox[{
RowBox[{
RowBox[{"BitAnd", "[",
RowBox[{"#", ",", " ",
RowBox[{"#", " ", "-", " ", "1"}]}], "]"}], " ", "&"}], ",", " ",
"Denominator"}], "]"}], "[", "x", "]"}], " ", "==", " ", "0"}],
"]"}], ",", " ", "False"}], "]"}]}], " ", ":=", " ",
RowBox[{"iFabiusF", "[", "x", "]"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}], " ",
":=", " ",
RowBox[{
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{"n", " ",
RowBox[{
RowBox[{"(",
RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}], " ",
RowBox[{"FabiusF", "[",
RowBox[{
RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}], "\n",
RowBox[{
RowBox[{"SetAttributes", "[",
RowBox[{"FabiusF", ",", " ",
RowBox[{"{",
RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}],
";"}]}], "Input",
TextAlignment->Center,
FontFamily->"Segoe UI Symbol",
FontSize->10,
FontWeight->"Normal",
CellLabel->"3/24/24 14:53:08 In[986]:=",
CellID->161896613,ExpressionUUID->"0d96d3fd-dac5-4a15-921c-c113c196ee35"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"\:1513\:1515", "=",
RowBox[{"{", " ",
RowBox[{
RowBox[{"WorkingPrecision", "\[Rule]", "10"}], ",",
RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "320"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}], ",",
RowBox[{"Frame", "\[Rule]", " ", "True"}], ",",
RowBox[{"Axes", "\[Rule]", " ", "False"}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{", "0", "}"}], ",",
RowBox[{"{", "0", "}"}]}], "}"}]}], " ", ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"GrayLevel", "[",
RowBox[{"168", "/", "256"}], "]"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]", " ",
RowBox[{"GrayLevel", "[",
RowBox[{"178", "/", "256"}], "]"}]}]}], " ", "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalPi]", "=", "2"}], ";",
RowBox[{"\:1450\:1455", "=", "4"}], ";",
RowBox[{"M", "=", ".5"}], ";",
RowBox[{"\[CapitalPi]\[CapitalPi]", "=", "4"}], ";"}], "\n",
RowBox[{
RowBox[{"\:15f1\:15f4", "=",
RowBox[{"Evaluate", "[",
RowBox[{"SetPrecision", "[",
RowBox[{
RowBox[{"SetAccuracy", "[",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Abs", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"Floor", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"x", " ", "/", "Pi"}], "*", "\:1450\:1455"}], "+",
"1"}], ")"}], "/", "2"}], "]"}]}], " ",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"Mod", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", " ", "/", "Pi"}], "*", "\:1450\:1455"}], "+",
"1"}], ",", "2"}], "]"}], "-", "1"}], "]"}], "^",
"\[CapitalPi]"}]}], ")"}], "]"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "\[CapitalPi]"}], ")"}]}]}], ")"}], "/",
"2"}], "+", ".5"}], "]"}]}], ")"}], ",", "Infinity"}], "]"}],
",", "Infinity"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Grid", "[",
RowBox[{"{",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{"Manipulate", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Column", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"CurvaturePlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"SetPrecision", "[",
RowBox[{
RowBox[{"SetAccuracy", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Abs", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"Floor", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"x", " ", "/", "Pi"}], "*", "\:1450\:1455"}], "+",
"1"}], ")"}], "/", "2"}], "]"}]}], " ",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"Mod", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", " ", "/", "Pi"}], "*", "\:1450\:1455"}], "+",
"1"}], ",", "2"}], "]"}], "-", "1"}], "]"}], "^",
"\[CapitalPi]"}]}], ")"}], "]"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "\[CapitalPi]"}], ")"}]}]}], ")"}], "/",
"2"}], "+", ".5"}], "]"}]}], ")"}], "-", "M"}], ",",
"Infinity"}], "]"}], ",", "Infinity"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{"4", "\[Pi]"}]}], "}"}], ",",
RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "16"}], ",", "16", ",",
RowBox[{"1", "/", "2"}]}], "]"}], ",",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "4"}], ",", "4", ",",
RowBox[{"1", "/", "2"}]}], "]"}]}], "}"}]}], " ", ",",
RowBox[{"PlotPoints", "\[Rule]",
RowBox[{"1", "+",
RowBox[{"2", "^", "\[CapitalPi]\[CapitalPi]"}]}]}]}], "]"}],
"\[IndentingNewLine]", ",", "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"SetPrecision", "[",
RowBox[{
RowBox[{"SetAccuracy", "[",
RowBox[{
RowBox[{".5", "-",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Abs", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"Floor", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"x", " ", "/", "Pi"}], "*", "\:1450\:1455"}], "+",
"1"}], ")"}], "/", "2"}], "]"}]}], " ",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"Mod", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", " ", "/", "Pi"}], "*", "\:1450\:1455"}], "+",
"1"}], ",", "2"}], "]"}], "-", "1"}], "]"}], "^",
"\[CapitalPi]"}]}], ")"}], "]"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "\[CapitalPi]"}], ")"}]}]}], ")"}], "/",
"2"}], "+", ".5"}], "]"}]}], ")"}], "-", "M"}], ",",
"Infinity"}], "]"}], ",", "Infinity"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{"4", "\[Pi]"}]}], "}"}], ",",
RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}], ",",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{"1", "/", "8"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Range", "[",
RowBox[{
RowBox[{
RowBox[{"-", "16"}], "*", "Pi"}], ",",
RowBox[{"16", "*", "Pi"}], ",",
RowBox[{"Pi", "/", "2"}]}], "]"}], ",",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "1"}], ",", "1", ",",
RowBox[{"1", "/", "2"}]}], "]"}]}], "}"}]}], " ", ",",
RowBox[{"PlotPoints", "\[Rule]",
RowBox[{"1", "+",
RowBox[{"2", "^", "\[CapitalPi]\[CapitalPi]"}]}]}]}], " ",
"]"}]}], "\[IndentingNewLine]", "}"}], "]"}], "\[IndentingNewLine]",
",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[CapitalPi]", ",", "1"}], "}"}], ",", "0", ",", "16", ",",
".25"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\:1450\:1455", ",", "4"}], "}"}], ",", "0", ",", "16", ",",
".25"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"M", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".125"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[CapitalPi]\[CapitalPi]", ",", "8"}], "}"}], ",", "0", ",",
"16", ",", "1"}], "}"}], "\[IndentingNewLine]", ",",
RowBox[{"FrameMargins", "\[Rule]", "0"}]}], "\[IndentingNewLine]",
"]"}], "\[IndentingNewLine]", "}"}], "}"}], "]"}]}], "Input",
TextAlignment->Center,
FontFamily->"Segoe UI Symbol",
FontSize->10,
FontWeight->"Normal",ExpressionUUID->"e9af63b5-ce7c-4f02-8437-ec7c3b69790f"],
Cell[BoxData[
TagBox[GridBox[{
{
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`\:1450\:1455$$ = 4, $CellContext`M$$ =
0, $CellContext`\[CapitalPi]$$ =
1, $CellContext`\[CapitalPi]\[CapitalPi]$$ = 8, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`\[CapitalPi]$$], 1}, 0, 16, 0.25}, {{
Hold[$CellContext`\:1450\:1455$$], 4}, 0, 16, 0.25}, {{
Hold[$CellContext`M$$], 0}, 0, 1, 0.125}, {{
Hold[$CellContext`\[CapitalPi]\[CapitalPi]$$], 8}, 0, 16, 1}},
Typeset`size$$ = {320., {222., 227.}}, Typeset`update$$ = 0,
Typeset`initDone$$, Typeset`skipInitDone$$ = True},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`\:1450\:1455$$ = 4, $CellContext`M$$ =
0, $CellContext`\[CapitalPi]$$ =
1, $CellContext`\[CapitalPi]\[CapitalPi]$$ = 8},
"ControllerVariables" :> {},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$,
Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Column[{
$CellContext`CurvaturePlot[
Evaluate[
SetPrecision[
SetAccuracy[(1 -
Abs[((-1)^
Floor[(($CellContext`x/Pi) $CellContext`\:1450\:1455$$ +
1)/2] Abs[
1 - Abs[
Mod[($CellContext`x/Pi) $CellContext`\:1450\:1455$$ + 1,
2] - 1]^$CellContext`\[CapitalPi]$$]^(
1/$CellContext`\[CapitalPi]$$))/2 +
0.5]) - $CellContext`M$$, Infinity],
Infinity]], {$CellContext`x, 0, 4 Pi},
Evaluate[$CellContext`\:1513\:1515], FrameTicks -> {
Range[-16, 16, 1/2],
Range[-4, 4, 1/2]}, PlotPoints ->
1 + 2^$CellContext`\[CapitalPi]\[CapitalPi]$$],
Plot[
Evaluate[
SetPrecision[
SetAccuracy[
0.5 - (1 -
Abs[((-1)^
Floor[(($CellContext`x/Pi) $CellContext`\:1450\:1455$$ +
1)/2] Abs[
1 - Abs[
Mod[($CellContext`x/Pi) $CellContext`\:1450\:1455$$ + 1,
2] - 1]^$CellContext`\[CapitalPi]$$]^(
1/$CellContext`\[CapitalPi]$$))/2 +
0.5]) - $CellContext`M$$, Infinity],
Infinity]], {$CellContext`x, 0, 4 Pi},
Evaluate[$CellContext`\:1513\:1515], AspectRatio -> 1/8,
FrameTicks -> {
Range[(-16) Pi, 16 Pi, Pi/2],
Range[-1, 1, 1/2]}, PlotPoints ->
1 + 2^$CellContext`\[CapitalPi]\[CapitalPi]$$]}],
"Specifications" :> {{{$CellContext`\[CapitalPi]$$, 1}, 0, 16,
0.25}, {{$CellContext`\:1450\:1455$$, 4}, 0, 16,
0.25}, {{$CellContext`M$$, 0}, 0, 1,
0.125}, {{$CellContext`\[CapitalPi]\[CapitalPi]$$, 8}, 0, 16,
1}}, "Options" :> {FrameMargins -> 0}, "DefaultOptions" :> {}],
ImageSizeCache->{345., {340., 345.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]}
},
AutoDelete->False,
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Grid"]], "Output",
FontFamily->"Segoe UI Symbol",
FontSize->10,
CellLabel->
"3/24/24 17:03:33 \
Out[1958]=",ExpressionUUID->"d798a34d-f2da-42c6-8aa3-1c805195e5c5"]
}, Open ]]
},
WindowToolbars->"EditBar",
WindowSize->{1680, 984},
WindowMargins->{{-4, Automatic}, {Automatic, -4}},
FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)",
StyleDefinitions->Notebook[{
Cell[
StyleData[StyleDefinitions -> "Default.nb"], TextAlignment -> Center,
FontFamily -> "Segoe UI Symbol", FontSize -> 12, FontWeight -> "Normal",
FontSlant -> "Plain", FontTracking -> "Plain",
FontVariations -> {"StrikeThrough" -> False, "Underline" -> False}],
Cell[
CellGroupData[{
Cell[
StyleData[All], TextAlignment -> Center, FontFamily ->
"Segoe UI Symbol", FontSize -> 12, FontWeight -> "Normal", FontSlant ->
"Plain", FontTracking -> "Plain",
FontVariations -> {"StrikeThrough" -> False, "Underline" -> False}],
Cell[
BoxData[""], "Input", TextAlignment -> Center, FontFamily ->
"Segoe UI Symbol", FontSize -> 12, FontWeight -> "Normal"]}, Open]]},
WindowSize -> {786, 884},
WindowMargins -> {{140, Automatic}, {-107, Automatic}}, FrontEndVersion ->
"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", StyleDefinitions ->
"PrivateStylesheetFormatting.nb"],
ExpressionUUID->"5ef6097c-72c8-4d11-b3dd-efe77ae843c3"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 6715, 178, 400, "Input",ExpressionUUID->"296ee68d-611b-4f39-8505-8dc995c0ca11"],
Cell[7276, 200, 6600, 181, 325, "Input",ExpressionUUID->"0d96d3fd-dac5-4a15-921c-c113c196ee35",
CellID->161896613],
Cell[CellGroupData[{
Cell[13901, 385, 9380, 235, 236, "Input",ExpressionUUID->"e9af63b5-ce7c-4f02-8437-ec7c3b69790f"],
Cell[23284, 622, 4248, 89, 718, "Output",ExpressionUUID->"d798a34d-f2da-42c6-8aa3-1c805195e5c5"]
}, Open ]]
}
]
*)

View file

@ -0,0 +1,37 @@
clc;tic;clf;clear;set(0,'DefaultFIGUREWINDOWSTYLE','DOCKED');
syms X
O_YTITNAUQ_TNIOP_TOLP_O_PLOT_POINT_QUANTITY_O=1+ (((( 2^8 )))) ;
O_EGNAR_X_O_X_RANGE_O= (((( -2 )))) : 1/(O_YTITNAUQ_TNIOP_TOLP_O_PLOT_POINT_QUANTITY_O-1) : (((( 2 )))) ;
O_ALUMROF_O_FORMULA_O=@(X) (((( X.^3.35 )))) ;
%O_ALUMROF_O_FORMULA_O=@(X) (((( 1./(exp(1./X + 1./(X - 1)) + 1) )))) ; %
%O_ALUMROF_O_FORMULA_O=@(X) (((( .5.*(1+tanh((.5-X)./((-1+X).*X))) )))) ; %
%O_ALUMROF_O_FORMULA_O=@(X) (((( ((-32.*(max(0,-15./16+X).^3-max(0,-13./16+X).^3-max(0,-11./16+X).^3+max(0,-9./16+X).^3-max(0,-7./16+X).^3+max(0,-5./16+X).^3+max(0,-3./16+X).^3-max(0,-1./16+X).^3))./3) )))) ; %
fprintf('%s\n',O_ALUMROF_O_FORMULA_O(X));
fprintf('%s\n',simplify(expand(O_ALUMROF_O_FORMULA_O(X),"IGNOREANALYTICCONSTRAINTS",true),"STEPS",16,"CRITERION","PREFERREAL","IGNOREANALYTICCONSTRAINTS",true));
O_TFIHS_THGIEH_O_HEIGHT_SHIFT_O_HEIGHT_SHIFT_O= (((( .5 )))) ;
O_SIXA_X_GNOLA_GNILCYC_LACITREW_O_WERTICAL_CYCLING_ALONG_X_AXIS_O=@(X)(-1).^floor(X).*(O_ALUMROF_O_FORMULA_O(mod(X,1))-O_TFIHS_THGIEH_O_HEIGHT_SHIFT_O_HEIGHT_SHIFT_O)+O_TFIHS_THGIEH_O_HEIGHT_SHIFT_O_HEIGHT_SHIFT_O;
fprintf('\n%s\n',O_SIXA_X_GNOLA_GNILCYC_LACITREW_O_WERTICAL_CYCLING_ALONG_X_AXIS_O(X));
fprintf('%s\n',simplify(expand(O_SIXA_X_GNOLA_GNILCYC_LACITREW_O_WERTICAL_CYCLING_ALONG_X_AXIS_O(X),"IGNOREANALYTICCONSTRAINTS",true),"STEPS",16,"CRITERION","PREFERREAL","IGNOREANALYTICCONSTRAINTS",true));
O_SIXA_X_GNOLA_GNILCYC_LATNOZIROH_O_HORIZONTAL_CYCLING_ALONG_X_AXIS_O=@(X)O_ALUMROF_O_FORMULA_O(mod(X,1)).*(mod(floor(X+1),2))+O_ALUMROF_O_FORMULA_O(1-mod(X,1)).*(mod(floor(-X+1),2));
fprintf('\n%s\n',O_SIXA_X_GNOLA_GNILCYC_LATNOZIROH_O_HORIZONTAL_CYCLING_ALONG_X_AXIS_O(X));
fprintf('%s\n',simplify(expand(O_SIXA_X_GNOLA_GNILCYC_LATNOZIROH_O_HORIZONTAL_CYCLING_ALONG_X_AXIS_O(X),"IGNOREANALYTICCONSTRAINTS",true),"STEPS",16,"CRITERION","PREFERREAL","IGNOREANALYTICCONSTRAINTS",true));
figure(gcf);
subplot(3,1,1);
plot(O_EGNAR_X_O_X_RANGE_O, O_ALUMROF_O_FORMULA_O(O_EGNAR_X_O_X_RANGE_O));
xlim([-2 2]);ylim([-1 1]);
pbaspect([4 1 1])
subplot(3,1,2);
plot(O_EGNAR_X_O_X_RANGE_O, O_SIXA_X_GNOLA_GNILCYC_LACITREW_O_WERTICAL_CYCLING_ALONG_X_AXIS_O(O_EGNAR_X_O_X_RANGE_O));
xlim([-2 2]);ylim([-1 1]);
pbaspect([4 1 1])
subplot(3,1,3);
plot(O_EGNAR_X_O_X_RANGE_O, O_SIXA_X_GNOLA_GNILCYC_LATNOZIROH_O_HORIZONTAL_CYCLING_ALONG_X_AXIS_O(O_EGNAR_X_O_X_RANGE_O));
xlim([-2 2]);ylim([-1 1]);
pbaspect([4 1 1])
fprintf(1,['\n\n%.' num2str(2^6) 'f\n'],toc);

View file

@ -0,0 +1,27 @@
clc
%tic;pkg install -forge symbolic;fprintf(1,['%.' num2str(2^6) 'f.\n'],toc);%
try
try
tic;digits(2^15-2);fprintf(1,['%.' num2str(2^6) 'f.\n'],toc);
tic
vpa(1)...
/...
vpa(84.406022589954030768899117092091000289089388918088900852079)...
*...
vpa(3)...
^...
vpa(9)
fprintf(1,['%.' num2str(2^6) 'f.\n'],toc)
catch ME
tic;pkg load symbolic;fprintf(1,['%.' num2str(2^6) 'f.\n'],toc);
end
catch ME
tic;fprintf(['%.' num2str(2^6) 'f\n'], 1 / 84.406022589954030768899117092091000289089388918088900852079 * 3^9);fprintf(1,['%.' num2str(2^6) 'f.\n'],toc);
end

View file

@ -0,0 +1,42 @@
clc;tic;clear;
O = 84.406022589954030768899117092091000289089388918088900852079 ;
A = (((( 0 )))) ;
M = (((( 3 )))) ;
I = (((( 0 )))) ;
O_EDUTILPMA_O_AMPLITUDE_O = 1 / M ^ (((( 0 )))) ;
O_SYCNEUQERF_O_FREQUENCYS_O = 1 / O * M.^(( (((( 0 )))) *M^A : (((( 13 )))) *M^A )/M^A);
for O_SEULAW_YCNEUQERF_O_FREQUENCY_WALUES_O=1:length(O_SYCNEUQERF_O_FREQUENCYS_O) fprintf(['%d : %.' num2str(2^4) 'f\n'],O_SEULAW_YCNEUQERF_O_FREQUENCY_WALUES_O,O_SYCNEUQERF_O_FREQUENCYS_O(O_SEULAW_YCNEUQERF_O_FREQUENCY_WALUES_O));end
fprintf('%s','<>');
O_ETAR_ELPMAS_O_SAMPLE_RATE_O=ceil( 4 * 2 ^ (((( 0 )))) / O * M ^ (((( 13 )))) ) ;
fprintf('\n%s\n',sprintf('%.d',O_ETAR_ELPMAS_O_SAMPLE_RATE_O));
fprintf('%s\n','*');
O_NOITARUD_O_DURATION_O = O / M ^ (((( 4 )))) ;
fprintf('%s\n',sprintf('%.16f',O_NOITARUD_O_DURATION_O));
fprintf('%s\n','=');
O_YTITNAUQ_ELPMAS_O_SAMPLE_QUANTITY_O=ceil(O_NOITARUD_O_DURATION_O*O_ETAR_ELPMAS_O_SAMPLE_RATE_O);
fprintf('%s\n',sprintf('%.d',O_YTITNAUQ_ELPMAS_O_SAMPLE_QUANTITY_O));
O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O=zeros(O_YTITNAUQ_ELPMAS_O_SAMPLE_QUANTITY_O,1);
for O_XEDNI_YCNEUQERF_O_FREQUENCY_INDEX_O=1:length(O_SYCNEUQERF_O_FREQUENCYS_O) O_EMIT_O_TIME_O=(0:O_YTITNAUQ_ELPMAS_O_SAMPLE_QUANTITY_O-1)/O_ETAR_ELPMAS_O_SAMPLE_RATE_O;
O_EPAHS_MROFEWAW_ENIS_O_SINE_WAWEFORM_SHAPE_O = sin(2*4*atan(1)*O_SYCNEUQERF_O_FREQUENCYS_O(O_XEDNI_YCNEUQERF_O_FREQUENCY_INDEX_O)*O_EMIT_O_TIME_O') ;
O_EPAHS_MROFEWAW_LAITNENOPXE_O_EXPONENTIAL_WAWEFORM_SHAPE_O = (-1).^floor(.5+O_SYCNEUQERF_O_FREQUENCYS_O(O_XEDNI_YCNEUQERF_O_FREQUENCY_INDEX_O)*2*O_EMIT_O_TIME_O').*(-1+2./(1+exp(1./(-1+mod(.5+O_SYCNEUQERF_O_FREQUENCYS_O(O_XEDNI_YCNEUQERF_O_FREQUENCY_INDEX_O)*2*O_EMIT_O_TIME_O',1))+1./mod(.5+O_SYCNEUQERF_O_FREQUENCYS_O(O_XEDNI_YCNEUQERF_O_FREQUENCY_INDEX_O)*2*O_EMIT_O_TIME_O',1)))) ;
O_EPAHS_MROFEWAW_DOIREP_ELGNIS_O_SINGLE_PERIOD_WAWEFORM_SHAPE_O = (((( O_EPAHS_MROFEWAW_ENIS_O_SINE_WAWEFORM_SHAPE_O )))) ;
O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O=O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O+O_EPAHS_MROFEWAW_DOIREP_ELGNIS_O_SINGLE_PERIOD_WAWEFORM_SHAPE_O;end
O_EPAHS_EDAF_ENISOC_O_COSINE_FADE_SHAPE_O = (0.5 - 0.5*cos(4*atan(1)/O_NOITARUD_O_DURATION_O*2* O_EMIT_O_TIME_O * M ^ (((( I )))) )) ;
O_EPAHS_EDAF_LAITNENOPXE_O_EXPONENTIAL_FADE_SHAPE_O = (0.5-0.5*(-1).^floor(1./O_NOITARUD_O_DURATION_O*2* O_EMIT_O_TIME_O * M ^ (((( I )))) )+((-1).^floor(1./O_NOITARUD_O_DURATION_O*2* O_EMIT_O_TIME_O * M ^ (((( I )))) ))./(1+exp((1)./(-1+mod(1./O_NOITARUD_O_DURATION_O*2* O_EMIT_O_TIME_O * M ^ (((( I )))) ,1))+(1)./(mod(1./O_NOITARUD_O_DURATION_O*2* O_EMIT_O_TIME_O * M ^ (((( I )))) ,1))))) ;
O_EPAHS_EDAF_O_FADE_SHAPE_O = (((( O_EPAHS_EDAF_ENISOC_O_COSINE_FADE_SHAPE_O )))) ;
for O_XEDNI_ELPMAS_O_SAMPLE_INDEX_O=1:O_YTITNAUQ_ELPMAS_O_SAMPLE_QUANTITY_O O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O(O_XEDNI_ELPMAS_O_SAMPLE_INDEX_O)=O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O(O_XEDNI_ELPMAS_O_SAMPLE_INDEX_O)*O_EDUTILPMA_O_AMPLITUDE_O*O_EPAHS_EDAF_O_FADE_SHAPE_O(O_XEDNI_ELPMAS_O_SAMPLE_INDEX_O);end
fprintf('%s','|');
fprintf('\n%s%s%s\n',sprintf('%.16f',max(abs(O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O))),'=',sprintf('%.16f',20*log10(max(abs(O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O)))));
O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O=(O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O/max(abs(O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O)))*O_EDUTILPMA_O_AMPLITUDE_O;
fprintf('%s\n','-');
fprintf('%s%s%s\n',sprintf('%.16f',max(abs(O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O))),'=',sprintf('%.16f',20*log10(max(abs(O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O)))));
try sound(O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O,O_ETAR_ELPMAS_O_SAMPLE_RATE_O,24);end
try audiowrite('C:\VAW.O____TUPTUO_ROTALICSO_OIDUA____O____AUDIO_OSCILATOR_OUTPUT____O.WAV',O_LANGIS_OIDUA_O_AUDIO_SIGNAL_O,O_ETAR_ELPMAS_O_SAMPLE_RATE_O,'BITSPERSAMPLE',64);end
fprintf('%s','#');
fprintf('\n%s\n',sprintf('%.16f',toc));